search box button 160x30
Venerdì 20 Aprile 2018
video-player-button

Durata Video : [00:52:38]
Modalità Accesso : [ABBONAMENTO]

 

Descrizione Contenuti Video :
Esposizione delle principali tecniche risolutive di particolari disequazioni esponenziali NON elementari parametriche con discussione generale. Alcuni esempi base e avanzati con discussione completa al variare del parametro e determinazione delle soluzioni accettabili in funzione del parametro. Determinazione del parametro per una specifica soluzione prefissata.

Testo Contenuto Video :

\[\left[ \begin{array}{l}
{\rm{Definizione}}\;{\rm{di}}\;{\rm{Esponenziale}}\;{\rm{e}}\;{\rm{Logaritmo}}\\
\left. {\begin{array}{*{20}{l}}
{{a^x} = b}\\
{a \in R\;\;\;\;\;\left\{ {\begin{array}{*{20}{l}}
{a > 0\;,\;\forall x \in R}\\
{a = 0\;,\;x > 0}
\end{array}} \right.}\\
{x \in R}\\
{b \in R\;\;\;\;\;b > 0}
\end{array}} \right\} \leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x = {{\log }_a}(b)}\\
{a \in R\;\;\;\;\;a > 0\;\;\;\;\;a \ne 1}\\
{b \in R\;\;\;\;\;b > 0}\\
{x \in R}
\end{array}} \right.
\end{array} \right.\]

\[\left[ \begin{array}{l}
{\rm{Disequazione}}\;{\rm{Esponenziale}}\;{\rm{Elementare - Canonica}}\\
{a^x} \ge \; \le b\;\;\;\; \to \;\;\;\;x\;?\\
\\
Metodo\;Diretto\;:\\
\;\;\;{a^x} \ge \; \le b\;\;\;\; \to \;\;\;\;\left\{ {\begin{array}{*{20}{l}}
{x \ge \; \le {{\log }_a}(b)\;\;\;\;\;\;\;\;\;\;a > 1\;}\\
{x \le \; \ge {{\log }_a}(b)\;\;\;\;\;0 < a < 1}
\end{array}} \right.\\
Metodo\;Indiretto\;:\\
\;\;\;{a^x} \ge \; \le b\;\;\;\; \to \;\;\;\;{a^x} \ge \; \le {a^{{{\log }_a}(b)}}\;\;\;\; \to \\
\;\;\; \to \;\;\;\;\left\{ {\begin{array}{*{20}{l}}
{x \ge \; \le {{\log }_a}(b)\;\;\;\;\;\;\;\;\;\;a > 1\;}\\
{x \le \; \ge {{\log }_a}(b)\;\;\;\;\;0 < a < 1}
\end{array}} \right.
\end{array} \right.\]

\[\left[ {\begin{array}{*{20}{l}}
{Metodo\;Logaritmico\;:}\\
{\;\;\;{a^x} \ge \; \le b\;\;\;\; \to }\\
\begin{array}{l}
\;\;\; \to \;\;\;\left\{ {\begin{array}{*{20}{l}}
{{{\log }_a}({a^x}) \ge \; \le {{\log }_a}(b)\;\;\;\;\;\;\;\;\;\;a > 1}\\
{{{\log }_a}({a^x}) \le \; \ge {{\log }_a}(b)\;\;\;\;\;0 < a < 1}
\end{array}} \right\}\;\;\; \to \\
\left. {\;\;\; \to \;\;\;\;\left\{ {\begin{array}{*{20}{l}}
{x \cdot {{\log }_a}(a) \ge \; \le {{\log }_a}(b)\;\;\;\;\;\;\;\;\;\;a > 1}\\
{x \cdot {{\log }_a}(a) \le \; \ge {{\log }_a}(b)\;\;\;\;\;0 < a < 1}
\end{array}} \right.} \right\}\;\;\;\;\; \to
\end{array}\\
{\;\;\; \to \;\;\;\left\{ {\begin{array}{*{20}{l}}
{x \ge \; \le {{\log }_a}(b)\;\;\;\;\;\;\;\;\;\;a > 1}\\
{x \le \; \ge {{\log }_a}(b)\;\;\;\;\;0 < a < 1}
\end{array}} \right\}}
\end{array}} \right.\]

\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Disequazioni}}\;{\rm{Esponenziali}}\;{\rm{NON}}\;{\rm{Elementari}}\;{\rm{ - }}\;{\rm{Tecniche}}\;{\rm{Risolutive}}}\\
{{\rm{Riduzione}}\;{\rm{a}}\;{\rm{disequazioni}}\;{\rm{esponenziali}}\;{\rm{elementari}}\;{\rm{canoniche}}}\\
{{\rm{mediante}}\;{\rm{varie}}\;{\rm{tecniche}}\;{\rm{e}}\;{\rm{artifici}}:}\\
{{\rm{ - }}\;{\rm{Scompozioni}}\;{\rm{algebriche}}\;{\rm{e}}\;{\rm{raccoglimenti}}}\\
{{\rm{ - }}\;{\rm{Proprieta}}\;{\rm{delle}}\;{\rm{potenze}}\;{\rm{e}}\;{\rm{degli}}\;{\rm{esponenziali}}}\\
{{\rm{ - }}\;{\rm{Sostituzione}}\;{\rm{con}}\;{\rm{cambio}}\;{\rm{di}}\;{\rm{variabile}}}\\
{{\rm{ - }}\;{\rm{Altri}}\;{\rm{artifici}}\;...}
\end{array}} \right.\]

\[\left[ {\begin{array}{*{20}{l}}
\begin{array}{l}
{\rm{Disequazioni}}\;{\rm{Esponenziali}}\;{\rm{NON}}\;{\rm{Elementari}}\;{\rm{Parametriche}}\\
{\rm{Esempi}}\;{\rm{Svolti}}
\end{array}\\
{{3^x} > k - 1}\\
{{{(k - 2)}^x} < 3}\\
{{{(k + 1)}^x}{\mkern 1mu} {3^{ - x + 2}} > 9{\mkern 1mu} {{(k - 2)}^x}}\\
{{5^{2x}} - 3\cdot{5^x} + k - 1 > 0}
\end{array}} \right.\]

 

Video Completo

 

 

>>   Per accedere a questo video è necessario essere un Utente Abbonato con EasyMath Premium IT !!   <<
>>   Accedi con il tuo Account Utente di Abbonato oppure abbonati al servizio dalla seguente pagina ...   <<

 

Abbonamenti EasyMath Premium IT >> ...

 

Video Anteprima

 

# Indice Argomento #
Algebra Base >> Esponenziali e Logaritmi >> Disequazioni Esponenziali >> Disequazioni Esponenziali NON Elementari Parametriche

Accedi al Forum di discussione su questo argomento >>

# Contenuti Argomento e Argomenti Correlati #
- Definizione di potenza e relative proprietà
- Estensione del concetto di potenza ad esponenti interi e frazionari
- Estensione del concetto di potenza ad esponente reale
- Definizione di esponenziale e logaritmo
- Relazione fondamentale tra esponeziale e logaritmo
- Esponenziali e campi di esistenza (dominio)
- Logaritmi e campi di esistenza (dominio)
- Proprietà degli esponenziali e dominio di applicabilità
- Proprietà dei logaritmi e dominio di applicabilità
- Basi speciali degli esponenziali e dei logaritmi: base decimale e neperiana (numero di nepero)
- Esponenziali e logaritmi decimali e neperiani
- Cambiamento di base degli esponenziali e dei logaritmi
- Calcolo di espressioni esponenziali con le proprietà
- Calcolo di espressioni logaritmiche con le proprietà
- Grafici fondamentali delle funzioni esponenziali e proprietà
- Grafici fondamentali delle funzioni logaritmiche e proprietà
- Equazioni esponenziali elementari-canoniche e quasi elementari
- Equazioni esponenziali NON elementari e tecniche risolutive
- Equazioni esponenziali NON elementari a base variabile
- Equazioni esponenziali NON elementari parametriche
- Equazioni logaritmiche elementari-canoniche e quasi elementari
- Equazioni logaritmiche NON elementari e tecniche risolutive
- Equazioni logaritmiche NON elementari a base variabile
- Equazioni logaritmiche NON elementari parametriche
- Disequazioni esponenziali elementari-canoniche e quasi elementari
- Disequazioni esponenziali NON elementari e tecniche risolutive
- Disequazioni esponenziali NON elementari a base variabile
- Disequazioni esponenziali NON elementari parametriche

 


Indice delle Video-Lezioni per argomento specifico

Per accedere più rapidamente alle PlayList Video espandi il seguente menù ad albero e seleziona l'argomento di interesse.

Indice Tree Video-Tutorials di Matematica

ATTENZIONE !! - 01/04/2018 - Importante Modifica dei Termini e Condizioni d'Uso per i servizi di questo Sito !! ... LEGGI L'INFORMATIVA ... >>     Ulteriori Informazioni    OK! ... Ho capito!  

I Cookies ci aiutano ad erogare servizi di qualità. Utilizzando i nostri servizi, l'utente
accetta le nostre modalità d'uso dei Cookies e la relativa Informativa sulla Privacy !!