Durata Video : [00:35:34]
Modalità Accesso : [ABBONAMENTO]
Descrizione Contenuti Video :
Introduzione alle tecniche di studio della derivabilità e continuità di una funzione. Determinazione dei punti sospetti di derivabilità e continuità. Alcuni esempi base di studio della derivabilità mediante il calcolo del limite del rapporto incrementale nei punti sospetti di derivabilità.
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Studio}}\;{\rm{Continuita}}\;({\rm{Concetti}}\;{\rm{Introduttivi}})}\\
{\begin{array}{*{20}{l}}
{f({x_0}) = {y_0}}\\
{\begin{array}{*{20}{l}}
{\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = {l_1}}\\
{\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = {l_2}}
\end{array}}
\end{array}}
\end{array}} \right.\]
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Studio}}\;{\rm{Derivabilita}}\;({\rm{Concetti}}\;{\rm{Introduttivi}})}\\
{\begin{array}{*{20}{l}}
{\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{h \to 0} \frac{{f({x_0} + h) - f({x_0})}}{h} = f'({x_0})}\\
{\begin{array}{*{20}{l}}
{{f_ + }^\prime \;({x_0}) = \mathop {\lim }\limits_{h \to {0^ + }} \frac{{f({x_0} + h) - f({x_0})}}{h} = {m_ + }}\\
{{f_ - }^\prime \;({x_0}) = \mathop {\lim }\limits_{h \to {0^ - }} \frac{{f({x_0} + h) - f({x_0})}}{h} = {m_ - }}
\end{array}}
\end{array}}
\end{array}} \right.\]
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Esempi}}\;{\rm{Svolti}}:}\\
{f(x) = \sqrt[3]{{{x^2}}}}\\
{f(x) = \sqrt[3]{{{x^4}}}}
\end{array}} \right.\]
Video Completo
>> Per accedere a questo video è necessario essere un Utente Abbonato con EasyMath Premium IT !! <<
>> Accedi con il tuo Account Utente di Abbonato oppure abbonati al servizio dalla seguente pagina ... <<
Abbonamenti EasyMath Premium IT >> ...
Video Anteprima
# Indice Argomento #
Analisi 1 >> Derivate e Calcolo Differenziale >> Studio Derivabilità e Continuità >> Concetti Introduttivi ed Esempi Base
Accedi al Forum di discussione su questo argomento >>
# Contenuti Argomento e Argomenti Correlati #
- Limite del rapporto incrementale e derivabilità in un punto generico
- Calcolo derivata in un punto generico e dominio di derivabilità
- Calcolo delle derivate generiche di funzioni elementari fondamentali
- Continuità e discontinuità di una funzione in un punto
- Punti di discontinuità (1° 2° 3° specie)
- Derivabilità e non derivabilità di una funzione in un punto
- Punti di non derivabilità (punti angolosi, cuspidi e punti di flesso a tangente verticale)
- Relazione tra derivabilità e continuità di una funzione in un punto
- Determinazione dei punti sospetti di derivabilità e continuità
- Tecniche di studio della derivabilità e continuità di una funzione
Indice delle Video-Lezioni per argomento specifico
Per accedere più rapidamente alle PlayList Video espandi il seguente menù ad albero e seleziona l'argomento di interesse.