Sistemi Misti di Equazioni Esponenziali e Logaritmiche - Teoria
PlayList delle Video-Lezioni di Teoria sui Sistemi Misti di Equazioni Esponenziali e Logaritmiche.
Introduzione ai sistemi misti di equazioni esponenziali e logaritmiche e relative tecniche risolutive. Principali tecniche per ricondurre il sistema di equazioni esponenziali e logaritmiche a un sistema di equazioni algebriche razionali o a un sistema di equazioni più semplici per isolare le incognite. Primi esempi base ed esempi più avanzati completi per sistemi di 2 equazioni in 2 incognite.
# Indice Argomento #
Algebra Base >> Esponenziali e Logaritmi >> Sistemi di Equazioni Esponenziali e Logaritmiche >> Sistemi Misti di Equazioni Esponenziali e Logaritmiche
Accedi al Forum di discussione su questo argomento >>
# Contenuti Argomento e Argomenti Correlati #
- Definizione di potenza e relative proprietà
- Estensione del concetto di potenza ad esponenti interi e frazionari
- Estensione del concetto di potenza ad esponente reale
- Definizione di esponenziale e logaritmo
- Relazione fondamentale tra esponeziale e logaritmo
- Esponenziali e campi di esistenza (dominio)
- Logaritmi e campi di esistenza (dominio)
- Proprietà degli esponenziali e dominio di applicabilità
- Proprietà dei logaritmi e dominio di applicabilità
- Basi speciali degli esponenziali e dei logaritmi: base decimale e neperiana (numero di nepero)
- Esponenziali e logaritmi decimali e neperiani
- Cambiamento di base degli esponenziali e dei logaritmi
- Calcolo di espressioni esponenziali con le proprietà
- Calcolo di espressioni logaritmiche con le proprietà
- Grafici fondamentali delle funzioni esponenziali e proprietà
- Grafici fondamentali delle funzioni logaritmiche e proprietà
- Equazioni esponenziali elementari-canoniche e quasi elementari
- Equazioni esponenziali NON elementari e tecniche risolutive
- Equazioni esponenziali NON elementari a base variabile
- Equazioni esponenziali NON elementari parametriche
- Equazioni logaritmiche elementari-canoniche e quasi elementari
- Equazioni logaritmiche NON elementari e tecniche risolutive
- Equazioni logaritmiche NON elementari a base variabile
- Equazioni logaritmiche NON elementari parametriche
- Disequazioni esponenziali elementari-canoniche e quasi elementari
- Disequazioni esponenziali NON elementari e tecniche risolutive
- Disequazioni esponenziali NON elementari a base variabile
- Disequazioni esponenziali NON elementari parametriche
- Disequazioni logaritmiche elementari-canoniche e quasi elementari
- Disequazioni logaritmiche NON elementari e tecniche risolutive
- Disequazioni logaritmiche NON elementari a base variabile
- Disequazioni logaritmiche NON elementari parametriche
- Equazioni esponenziali-logaritmiche miste e tecniche risolutive
- Disequazioni esponenziali-logaritmiche miste e tecniche risolutive
- Equazioni esponenziali NON elementari risolubili graficamente
- Equazioni logaritmiche NON elementari risolubili graficamente
- Disequazioni esponenziali NON elementari risolubili graficamente
- Disequazioni logaritmiche NON elementari risolubili graficamente
- Sistemi di equazioni esponenziali e tecniche risolutive
- Sistemi di equazioni logaritmiche e tecniche risolutive
- Sistemi misti di equazioni esponenziali e logaritmiche
Indice delle Video-Lezioni per argomento specifico
Per accedere più rapidamente alle PlayList Video espandi il seguente menù ad albero e seleziona l'argomento di interesse oppure seleziona in basso alla pagina la sottocategoria relativa all'argomento corrente.
Elenco Video-Lezioni di questa PlayList
# Titoli Video-Tutorials e Testo Contenuti #
(utilizza il codice datanumerico per ritrovare il video visto in anteprima su YouTube e clicca sul link del titolo per accedere al video!)
Durata Video : [00:47:10]
Modalità Accesso : [ABBONAMENTO]
Descrizione Contenuti Video :
Introduzione ai sistemi misti di equazioni esponenziali e logaritmiche e relative tecniche risolutive. Principali tecniche per ricondurre il sistema di equazioni esponenziali e logaritmiche a un sistema di equazioni algebriche razionali o a un sistema di equazioni più semplici per isolare le incognite. Primi esempi base ed esempi più avanzati completi per sistemi di 2 equazioni in 2 incognite.
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Equazioni}}\;{\rm{Esponenziali}}\;{\rm{NON}}\;{\rm{Elementari}}\;{\rm{ - }}\;{\rm{Tecniche}}\;{\rm{Risolutive}}}\\
{{\rm{Riduzione}}\;{\rm{ad}}\;{\rm{equazioni}}\;{\rm{esponenziali}}\;{\rm{elementari}}\;{\rm{canoniche}}}\\
{{\rm{mediante}}\;{\rm{varie}}\;{\rm{tecniche}}\;{\rm{e}}\;{\rm{artifici}}:}\\
{{\rm{ - }}\;{\rm{Scompozioni}}\;{\rm{algebriche}}\;{\rm{e}}\;{\rm{raccoglimenti}}}\\
{{\rm{ - }}\;{\rm{Proprieta}}\;{\rm{delle}}\;{\rm{potenze}}\;{\rm{e}}\;{\rm{degli}}\;{\rm{esponenziali}}}\\
{{\rm{ - }}\;{\rm{Sostituzione}}\;{\rm{con}}\;{\rm{cambio}}\;{\rm{di}}\;{\rm{variabile}}}\\
{{\rm{ - }}\;{\rm{Altri}}\;{\rm{artifici}}\;...}
\end{array}} \right.\]
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Equazioni}}\;{\rm{Logaritmiche}}\;{\rm{NON}}\;{\rm{Elementari}}\;{\rm{ - }}\;{\rm{Tecniche}}\;{\rm{Risolutive}}}\\
{{\rm{Riduzione}}\;{\rm{ad}}\;{\rm{equazioni}}\;{\rm{logaritmiche}}\;{\rm{elementari}}\;{\rm{canoniche}}}\\
{{\rm{mediante}}\;{\rm{varie}}\;{\rm{tecniche}}\;{\rm{e}}\;{\rm{artifici}}:}\\
{{\rm{ - }}\;{\rm{Scompozioni}}\;{\rm{algebriche}}\;{\rm{e}}\;{\rm{raccoglimenti}}}\\
{{\rm{ - }}\;{\rm{Proprieta}}\;{\rm{dei}}\;{\rm{logaritmi}}}\\
{{\rm{ - }}\;{\rm{Sostituzione}}\;{\rm{con}}\;{\rm{cambio}}\;{\rm{di}}\;{\rm{variabile}}}\\
{{\rm{ - }}\;{\rm{Altri}}\;{\rm{artifici}}\;...}
\end{array}} \right.\]
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Sistemi}}\;{\rm{Misti}}\;{\rm{di}}\;{\rm{Equazioni}}\;{\rm{Esponenziali}}\;{\rm{e}}\;{\rm{Logaritmiche}}}\\
{{\rm{Riduzione}}\;{\rm{a}}\;{\rm{sistemi}}\;{\rm{algebrici}}\;{\rm{razionali}}\;{\rm{o}}\;{\rm{a}}\;{\rm{sistemi}}\;{\rm{di}}}\\
{{\rm{equazioni}}\;{\rm{piu}}\;{\rm{semplici}}\;{\rm{mediante}}\;{\rm{varie}}\;{\rm{tecniche}}\;{\rm{e}}\;{\rm{artifici}}}
\end{array}} \right.\]
\[\left[ {\begin{array}{*{20}{l}}
{{\rm{Esempi}}\;{\rm{Svolti}}}\\
{\left\{ {\begin{array}{*{20}{l}}
{y - {{\log }_3}(x) = 2}\\
{{3^y} - 4x = 1}
\end{array}} \right.}\\
{\left\{ {\begin{array}{*{20}{l}}
{{{\log }_2}({3^{2x}} + {3^y}) - {{\log }_2}({3^{y - x}} + 6) = 1}\\
{{3^y} = {9^x}}
\end{array}} \right.}\\
{\left\{ {\begin{array}{*{20}{l}}
{{y^{\log (x)}} = 100}\\
{\frac{1}{{{{\log }_x}(10)}} + \log (y) = {{\log }_3}(27)}
\end{array}} \right.}\\
{\left\{ {\begin{array}{*{20}{l}}
{2\cdot{3^{x + 1}} - {2^{y + 2}} + 2 = 0}\\
{{{\log }_3}({2^y} - 1) = 2x}
\end{array}} \right.}
\end{array}} \right.\]